National Repository of Grey Literature 29 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Investigation of Miniature Devices for Collection of Hydride Forming Elements in Atomic Spectrometry Methods
Krejčí, Pavel ; Čelechovská, Olga (referee) ; Janoš, Pavel (referee) ; Otruba, Vítězslav (referee) ; Dočekal, Bohumil (advisor)
Capability of a prototype of miniature collection device based on a strip of the molybdenum foil for collecting hydride forming elements (As, Se, Sb and Bi) was studied. The device was combined with a miniature hydrogen diffusion flame for detection by atomic absorption spectrometry. The conditions for trapping and subsequent vaporization of analytes of interest were optimized. A twin-channel hydride generation system was used for study of mutual interference effects of co-generated hydride forming elements. The influence of modification of the molybdenum surface with noble metals - Rh, Pt and Ir on trapping and vaporization processes was also studied and changes of microstructure of the foil surface after modification were investigated using scanning electron microscope equipped with energy dispersive x-ray analyzer and electron backscattered diffraction system. Complementary radiotracer and radiography experiments were performed in order to determine trapping efficiency and to assess the spatial distribution of collected analytes within the device. Practical application of the method was demonstrated on determination of antimony in water samples at trace level. Possibility of multi-element analysis was demonstrated by combining the collection device with atomization and excitation of the analyte in microwave induced plasma and with detection by atomic emission spectrometry method. The results of the experiments proved that tested miniature collection device is capable of trapping analytes that form volatile hydrides. This device can be coupled to various types of atomizers, typically used in spectrometry methods. Thus, very sensitive and specific detection of hydride forming elements can be performed.
Atomization of hydride forming elements in dielectric barrier plasma discharges
Baranová, Barbora
The aim of this diploma thesis was to optimize the atomization conditions of two hydride forming elements - bismuth and tellurium in dielectric barrier discharge (DBD) plasma atomizers using atomic absorption spectrometry (AAS) as a detector. Two types of electrode constructions of planar DBD atomizers were studied: glued and sputtered electrodes while two construction of high voltage power supply sources were investigated employing either a sinusoidal or square wave modulation of high voltage function. The effect of the gas phase dryer included in the apparatus upstream the atomizer was also investigated. A nafion membrane tube dryer was identified as the most effective one. Its efficiency was verified using optical emission spectrometry. With the nafion tube included in the apparatus, two main parameters of DBD atomizers were optimized: the voltage of the power supply source and argon flow rate, which served as a discharge gas. Using optimal conditions, analytical characteristics were determined for all atomizers used and these were subsequently compared with those achieved in an externally heated quartz (multi)atomizer (MM)QTA. In the case of bismuth, the optimal argon flow rate was determined to be 75 cm3 min-1 for all atomizers. The optimal value for the power supply source with sinusoidal...
Atomization of hydride forming elements in dielectric barrier plasma discharges
Baranová, Barbora ; Kratzer, Jan (advisor) ; Hrdlička, Aleš (referee)
The aim of this diploma thesis was to optimize the atomization conditions of two hydride forming elements - bismuth and tellurium in dielectric barrier discharge (DBD) plasma atomizers using atomic absorption spectrometry (AAS) as a detector. Two types of electrode constructions of planar DBD atomizers were studied: glued and sputtered electrodes while two construction of high voltage power supply sources were investigated employing either a sinusoidal or square wave modulation of high voltage function. The effect of the gas phase dryer included in the apparatus upstream the atomizer was also investigated. A nafion membrane tube dryer was identified as the most effective one. Its efficiency was verified using optical emission spectrometry. With the nafion tube included in the apparatus, two main parameters of DBD atomizers were optimized: the voltage of the power supply source and argon flow rate, which served as a discharge gas. Using optimal conditions, analytical characteristics were determined for all atomizers used and these were subsequently compared with those achieved in an externally heated quartz (multi)atomizer (MM)QTA. In the case of bismuth, the optimal argon flow rate was determined to be 75 cm3 min-1 for all atomizers. The optimal value for the power supply source with sinusoidal...
Contribution to optimization of parameters of speciation analysis of As based on selective hydride generation in direct transfer mode and detection by atomic absorption spectrometry
Vyvadilová, Tereza ; Dědina, Jiří (advisor) ; Korunová, Vlasta (referee)
The presented thesis deals with optimization of parameters speciation analysis based on a selective hydride generation in a direct transfer mode of hydrides and on-line atomization in an atomic absorption spectrometer. In the first part of the thesis processes during generation were investigated. Important indicator of a reactions taking place in a generator is volume of hydrogen (created by decomposition of NaBH4) which is subsequently introduced to the atomizer. In this part of the thesis a new approach to determine a flow rate of hydrogen delivered to the atomizator was developed. An influence of relevant paremeters of the atomizers and atomic absorption spectrometers on basic analytical characteristics of arsenic determination based on hydride generation was performed in the second part. Three atomic absorption spectrometers were used and three sources of radiation were compared. The most important analytic characteristic was the limit of detection which is influenced by standard deviation of measurement values of blank samples and by sensitivity. The best values of the limit of detection were achieved with electrodeless discharge lamps. Key words: hydride generation, arsenic, speciation analysis, atomic absorption spectrometry
Development of Instrumentation and Methodology for Elemental and Speciation Analysis of Arsenic Based on Hydride Generation and on Atomic Fluorescence Spectrometric Detection
Marschner, Karel ; Dědina, Jiří (advisor) ; Kanický, Viktor (referee) ; Spěváčková, Věra (referee)
(EN) The presented dissertation is devoted to hydride generation from arsenic species and its application for speciation analysis based on atomic fluorescence detection. Hydride generation from toxicologically relevant arsenic species was optimized in order to achieve a 100% efficiency. The resulted experimental setup was subsequently used for speciation analysis of arsenic in human urine by high performance liquid chromatography with detection by atomic fluorescence spectrometry. The accuracy of the developed method was verified by comparative analyses of human urine samples collected from five individuals with an independent reference method. The cleavage of As-C bond during the reaction of methylated arsenic species with tetrahydridoborate(1-) (THB) in acidic media was studied in detail. Pronounced demethylation of methylated arsenic species was found during the reaction of THB with HCl, H2SO4, and HClO4 while hydride generation from CH3COOH or TRIS buffer after prereduction with L- cysteine resulted in the exclusive formation of the corresponding hydrides. Firstly, this phenomenon can endanger the accuracy of arsenic speciation which is based on hydride generation of substituted arsanes. Secondly, the more complex arsenic species can be converted to the hydride. That was demonstrated on hydride...
Optimization of generation and atomization of arsines for speciation analysis by atomic fluorescence spectrometry
Marschner, Karel ; Dědina, Jiří (advisor) ; Komárek, Josef (referee)
Speciation analysis of arsenic based on selective hydride generation and detection by atomic fluorescence spectrometry have been studied in this work. It was found that under optimum conditions of atomization in the flame in gas shield atomizer, sensitivity was approximately twice higher and detection limit was about four times lower compared to miniature diffusion flame, which is a standard atomizer for atomic fluorescence spectrometry. The conditions to generate hydrides from both inorganic forms of the arsenic, i.e. from arsenite and arsenate, with the same efficiency have been found in the batch arrangement, by using 1 mol dm-3 hydrochlorid acid and 1% solution of tetrahydridoborate. To determine only trivalent form, TRIS buffer at pH 6.00 was used together with 1% sodium tetrahydridoborate. The detection limits found for inorganic arsenic, i.e. for arsenite and arsenate, respectively, were 15 ng dm-3 and 9 ng dm-3 . It was found that in the batch arrangement under these conditions it is possible to generate corresponding hydrides methylarsonate and dimethylarsonate with the same efficiency as from the inorganic form. Finally, it was found when slightly changing the gas-liquid separator design in order to introduce the mixture of tetrahydridoborate with hydrochloric acid to the bottom of the...
Mechanism of atomization of selected hydride forming elements in an externally heated quartz tube atomizer and a dielectric barrier discharge atomizer
Juhászová, Lucie ; Kratzer, Jan (advisor) ; Hrdlička, Aleš (referee)
Atomization conditions for tin hydride in the planar dielectric barrier discharge (DBD) plasma atomizer were optimized with detection by atomic absorption spectrometry (AAS). The effects of apparatus arrangement such as the shape of a waveform function of the high voltage power supply source, DBD atomizer design as well as presence of a dryer tube filled with NaOH pellets to prevent residual aerosol and moisture transport into the DBD were investigated in detail. The optimal experimental setup consisted of a square wave high voltage power supply source coupled to a DBD with vapor-deposited electrodes in the presence of NaOH dryer upstream the DBD atomizer. Argon was found as the best discharge gas under a flow rate of 120 mL min-1 while the DBD optimum high voltage supply rate was 7 kV. A sensitivity of 0.05 s ng-1 Sn and a limit of detection of 1.1 ng mL-1 Sn were reached under optimized conditions. Optimization of the whole experimental setup resulted in 7-fold improvement of sensitivity compared to the original arrangement consisting of a sinusoidal source coupled to a DBD atomizer with glued electrodes in absence of the dryer. Keywords atomic absorption spectrometry, hydride generation, hydride atomization, quart tube atomizer, dielectric barrier discharge (DBD)
Hydride generation study for arsenic speciation analysis with AAS and AFS detection
Svoboda, Milan ; Dědina, Jiří (advisor) ; Spěváčková, Věra (referee) ; Komárek, Josef (referee)
The general aim of this work was a development of methodology and instrumentation for speciation analysis based on the combination of the selective generation of substituted hydrides with atomic absorption or atomic fluorescence spectrometry detection. The first topic of this work was the development of methodology and instrumentation for arsenic speciation analysis based on selective generation of substituted arsines with trapping in the cryogenic trap (U-tube packed with chromosorb) with AAS detection (HG- CT-AAS). The conditions of the selective hydride generation approach as well as working procedure of the cryogenic trap were optimized (appropriate approach for hydride generation, set up of heating program of cryogenic trap, new dryer - cartidge with NaOH, elimination of unspecific absorption, decreasing of the detection limits). The second important part of the work lay in applying of the developed method for arsenic speciation analysis in a homogenized mouse liver tissue. The direct slurry sampling to hydride generator was develop. Moreover the information about oxidation state (iAsIII,V , MAsIII,V a DMAsIII,V ) was obtain. The effect of relevant experimental parameters such as tetrahydroborate concentration, TRIS buffer concentration and time of pre-reduction of the samples by L-cysteine...
Next generation of hydride atomizers based on dielectric barrier plasma discharge
Kráľová, Zuzana ; Kratzer, Jan (advisor) ; Hrdlička, Aleš (referee)
Atomization conditions for selenium and lead hydrides in a dielectric barrier discharge (DBD) plasma atomizer with detection by atomic absorption spectrometry (AAS) were investigated in this work. Two designs of DBD atomizers were studied, the first one with glued electrodes and the second one with sputtered electrodes. The main experimental parameters were optimized, including supplied power and discharge gas (argon) flow rate. Additionally, the effect of several dryers was studied. Analytical figures of merit were determined for both plasma atomizers under the optimized conditions and compared to multiatomizer (MMQTA) as the most common hydride atomizer. The optimum flow rate for selenium determination was 75 cm3 min-1 Ar for both DBD atomizer designs as well as for MMQTA. In case of lead hydride atomization, ideal flow rate of argon was 175 cm3 min-1 for DBD atomizer with glued electrodes and 150 cm3 min-1 with DBD atomizer with sputtered electrodes, while MMQTA required only 100 cm3 min-1 Ar. The optimal power supply for DBD with sputtered electrodes was found significantly lower at 7.3 W for selenium and 13.3 W for lead. A dryer based on nafion membrane was found as the most effective for both analytes studied. Its efficacy was verified by optical emission spectrometry. As for analytical...

National Repository of Grey Literature : 29 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.